HIGHLY EFFICIENT SIMULATION WITH UNCERTAINTY QUANTIFICATION FOR FAST AND RELIABLE DECISION MAKING IN ADVANCED MOBILITY SYSTEMS

Reference List

1. Schwarting, W., Alonso-Mora, J., & Rus, D. (2018). Planning and decision-making for autonomous vehicles. Annual Review of Control, Robotics, and Autonomous Systems.

2. Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

3. Kober, J., Bagnell, J. A., & Peters, J. (2013). Reinforcement learning in robotics: A survey. The International Journal of Robotics Research, 32(11), 1238-1274.

4. Cunningham, A. G., Galceran, E., Eustice, R. M., & Olson, E. (2015, May). MPDM: Multipolicy decision-making in dynamic, uncertain environments for autonomous driving. In 2015 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1670-1677). IEEE.

5. Zhou, B., Schwarting, W., Rus, D., & Alonso-Mora, J. (2018, May). Joint multi-policy behavior estimation and receding-horizon trajectory planning for automated urban driving. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 2388-2394). IEEE.

6. Cesari, G., Schildbach, G., Carvalho, A., & Borrelli, F. (2017). Scenario model predictive control for lane change assistance and autonomous driving on highways. IEEE Intelligent transportation systems magazine, 9(3), 23-35.

7. Mesbah, A. (2016). Stochastic model predictive control: An overview and perspectives for future research. IEEE Control Systems Magazine, 36(6), 30-44.

8. Gorodetsky, A. A., Geraci, G., Eldred, M. S., & Jakeman, J. D. (2020). A generalized approximate control variate framework for multifidelity uncertainty quantification. Journal of Computational Physics, 408, 109257.

9. Xiu, D., & Karniadakis, G. E. (2002). The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM journal on scientific computing, 24(2), 619-644.

10. H. Yang, N. Kidambi, K. W. Wang, G. M. Pietron, R. Hippalgaonkar, Y. Fujii, “Quantifying the Effect of Initialization Errors for Enabling Accurate Online Drivetrain Simulations,” SAE World Congress & Exhibition, 2019-04-0679, Detroit, MI, 2019.

11. H. Yang, N. Kidambi, Y. Fujii, A. Gorodetsky, and K. W. Wang, “Uncertainty Quantification Using Polynomial Chaos for Online Automotive Propulsion System Simulations”, American Control Conference, Denver, CO, July 2020 (accepted).